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As is known to us, QEC(Quantum Error Correction) is absolutely important in the NISQ(Noisy
intermediate-scale quantum) era, and due to its compatibility with two-dimensional architec-
tures and relatively high error thresholds, surface code is considered as a promising protocol to
FTQC(Fault Tolerant Quantum Computation). In this review paper, I demonstrate how the sup-
pression factor, code distance and physical error rate interact to enable scalable fault-tolerant quan-
tum memory. By the way we discuss the important role real-time decoding plays in meeting the
stringent demands of future large-scale quantum algorithms. What’s more, I conclude the main
barriers to FTQC, which in turn explains why Google’s work is considered a critical step from
theoretical feasibility to practical scalability.
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I. INTRODUCTION TO QEC:
USING SURFACE CODE AS EXAMPLE

Quantum error correction (QEC) protects fragile quan-
tum information from decoherence and other noise by
encoding a single logical qubit into an entangled state
of multiple physical qubits without directly copying the
quantum state. The digitisation of quantum errors
means it is possible to reuse certain techniques from clas-
sical coding theory in quantum error correction[1].

However, there remain a number of complications that
prevent the straight-forward translation of classical codes
to quantum codes. The first complication is the no-
cloning theorem for quantum states, which asserts that
it is not possible to construct a unitary operator Uclone
which performs the following operation

Uclone(|ψ⟩ ⊗ |0⟩) → |ψ⟩ ⊗ |ψ⟩ (1)

where |ψ⟩ is the state to be cloned.
The second complication in quantum coding arises

from the fact that qubits are susceptible to both bit-flips
(X-errors) and phase-flips (Z-errors). Quantum error cor-
rection codes must therefore be designed with the ability
to detect both error-types simultaneously.

The final complication specific to quantum error cor-
rection is the problem of wavefunction collapse. For
quantum codes, any measurements of the qubits per-
formed as part of the error correction procedure must
be carefully chosen so as not to cause the wavefunction
to collapse and erase the encoded information.

A. Quantum Redundancy and
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stabilizer measurement

The encode stage of the two-qubit code, acting on the
general state |ψ⟩, has the following action

|ψ⟩ = α|0⟩+ β|1⟩ → |ψ⟩L = α|00⟩+ β|11⟩ (2)

Note that this doesn’t correspond to cloning the state as

|ψ⟩L = α|00⟩+ β|11⟩ ̸= |ψ⟩ ⊗ |ψ⟩ (3)

and the operator Z1Z2 is said to stabilize the logic qubit
|ψ⟩L as it leaves it unchanged

Z1Z2|ψ⟩L = Z1Z2(α|00⟩+ β|11⟩) = (+1)|ψ⟩L (4)

So the syndrome extraction stage of the circuit trans-
forms the quantum state as follows

E|ψ⟩L|0⟩A →
1
2 (I1I2 + Z1Z2)E|ψ⟩L|0⟩A

+ 1
2 (I1I2 − Z1Z2)E|ψ⟩L|1⟩A

(5)

as shown in the FIG.1.

FIG. 1. Encode and syndrome system

There are some simple code such as three-qubit error
correction code and Shor code, while I will introduce an-
other type of codes, which is named as stabilizer codes.
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B. Stabilizer Codes

Both surface code and color code belong to stabilizer
code(due to their speciality, they are also called toric
code), and this is such an interesting topic that I would
devote a bit more space to explain it.

First we denote any error correction code as [[n, k, d]],
where n is the amount of qubits used to encode the log-
ical bits, k means how many bits can this code method
encode, and d is the code distance, which I will explain.

The stabilizers Pi of an [[n, k, d]] code must satisfy the
following properties:

• They must be Pauli-group elements, Pi ∈ Gn. Here
Gn is the Pauli Group over n-qubits.

• They must stabilize all logical states |ψ⟩L of the
code. This means that each Pi has the action
Pi|ψ⟩L = (+1)|ψ⟩ for all possible values of |ψ⟩L.

• All the stabilizers of a code must commute with one
another, so that [Pi, Pj ] = 0 for all i and j. This
property is necessary so that the stabilizers can be
measured simultaneously (or in a way independent
of their ordering).

So the formalism of stabilizers can be defined as this

S =
{
Pi ∈ Gn | Pi|ψ⟩L = (+1) |ψ⟩,

[Pi, Pj ] = 0
} (6)

The logical operators satisfy the following properties

• They commute with all the code stabilizers in S.

• They anti-commute with one another, so that
[X̄i, Z̄i]+ = X̄iZ̄i + Z̄iX̄i = 0 for all qubits i.

Now I’m going to show a way to calculatek from n.
Define the project operator

ΠC =
1

2m
(I + S1)(I + S2) . . . (I + Sm) (7)

Si are generators of the stabilizer group. It’s easy to see
that

SiE|ψ⟩ = ESi|ψ⟩, E|ψ⟩ ∈ CodeSpace

and

SiE|ψ⟩ = −ESi|ψ⟩, E|ψ⟩ /∈ CodeSpace

So

ΠC |ψ⟩ =

{
|ψ⟩, if |ψ⟩ ∈ CodeSpace;

0, if |ψ⟩ /∈ CodeSpace
(8)

Thus the eigenvalues of ΠC are 1 and 0. Due to this
property, we can get dim(C)

Tr[ΠC ] = dim(C) (9)

Notice the fact that trace of pauli matrix is 0, so there’s
only identity operator being non-zero, which lives in 2n

Hilbert space

dim(C) =
2n

2m
= 2n−m (10)

Code space corresponds to logical bits, so the number of
bits this can encode is n−m, or say this is a [[n, n−m, d]]
code, where m is the number of elements in group S.

C. Surface Code

Thanks to Arthur Pesah’s blogs, I could have under-
stood surface code very easily.

The surface code can be defined on a square grid of
size L× L, where qubits sit on the edges, as shown here
for L = 4:

FIG. 2. Lattice on torus and operators

We define two kinds of stabilizers X̄(the red plaque-
ttes) and Z̄(the blue vertex ”+”s)[2][3].

The trick was to draw an edge orthogonal to every blue
edge (dashed purple lines on the figure). Formally, this
corresponds to representing the operator in the so-called
dual lattice, a lattice formed by rotating each edge by 90°
(dashed grey lattice in the figure). In this lattice, vertex
stabilizers have a square-like shape, similar to the pla-
quette stabilizers of the primal lattice. Therefore, all the
properties we can derive for X stabilizers, errors and log-
icals can be directly translated to Z operators by simply
considering the dual lattice, where Z operators behave
exactly like X operators.
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FIG. 3. Dual lattice

In this manner, error excitation only occurs on the
boundary of error paths

FIG. 4. Error detects

FIG. 5. Operators on the torus

Watch FIG.5, we can find there are two kinds of string
operators. We say that two loops on M are equivalent
if there exists a smooth deformation of one loop to the
other, meaning that we can smoothly move the first loop
to the other loop without cutting it.

Moreover, we say that a loop is contractible, or trivial,
if it is equivalent to a point, that is, we can smoothly
reduce it until it becomes a single point. All the loops
in the figure above are examples of contractible loops on
the torus.

While in the figure beneath, One loop (blue) goes
around the middle hole, while two loops (red) goes
around the hole formed by the inside of the donut. Note
that those types of loop (red and blue) are not equivalent
to each other, and cannot be deformed to obtain any of
the green loops of the first figure neither[4].

Note that in general, the surface code can be defined on
any smooth manifold M by discretizing it. The number
of logical qubits of the code is then directly connected to
the topological properties of the manifold, and in partic-
ular, to the number of holes, or in more technical terms,
the first Betti number of the manifold. For instance, for
the torus, the fact that k = 2 is a consequence of the
presence of two holes.

After all we can find that this is a [[2L2, 2, L]] code.
As for decoding, The goal of it is to find a correction

operator that belongs to the same coset as the actual er-
ror. Indeed, the product CE of the correction operator
with the error is equal to a stabilizer if and only if there
is a stabilizer S such that C = ES, that is, if C and
E belong to the same class. To solve this problem with
the information we have, that is, only the syndrome and
the error probabilities, the optimal decoding problem,
also called maximum-likelihood decoding, can be formu-
lated as finding the coset C̄ with the highest probability
maxC̄ P (C̄).

As it happens, this is completely equivalent to solv-
ing a famous graph problem, known as minimum-weight
perfect matching.

There’s also rotated surface code, they are [[L2, 1, L]],
shown in FIG.6. In this manner, qubits are placed on the
vertexes.

FIG. 6.

That’s all we have to know to understand the work of
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Google.

II. DEMONSTRATION OF SURFACE CODE
BELOW THE THRESHOLD

Quantum error correction is postulated to realize high-
fidelity logical qubits by distributing quantum infor-
mation for many entangled physical qubits to protect
against errors. If the physical operations are below a
critical noise threshold, the logical error rate should be
suppressed exponentially as we increase the number of
physical qubits per logical qubit. This behaviour is ex-
pressed in the approximate relation[5]

εd ∝
(

p

pthr

) d+1
2

(11)

where p is physical error rate, pthr is the threshold error
rate of the code, εd is logical error rate.

Thus, when p≪ pthr, the error rate of the logical qubit
is suppressed exponentially in the distance of the code,
with the error suppression factor Λ = εd

εd+2
≈ pthr

p repre-
senting the reduction in logical error rate when increas-
ing the code distance by two. Although many platforms
have demonstrated different features of quantum error
correction, no quantum processor has definitively shown
below-threshold performance.

This guarantees that with code distance d growing, the
probability of logical error happening must decrease. The
principle is simple but it is very difficult to realize, and
Google first reached this goal as a pioneer.

Along with a high-fidelity processor, fault-tolerant
quantum computing also requires a classical co-processor
that can decode errors in real time. This is because some
logical operations are non-deterministic; they depend on
logical measurement outcomes that must be correctly
interpreted on the fly. If the decoder cannot process
measurements fast enough, an increasing backlog of syn-
drome information can cause an exponential increase in
computation time.

But there’s still a lot of barriers in front of us. Al-
though we might, in principle, achieve low logical error
rates by scaling up our current processors, it would be
resource intensive in practice.[5] Extrapolating the pro-
jections and achieving a 10−6 error rate would require
a distance-27 logical qubit using 1,457 physical qubits,
which is difficult to realize in the near future.

Scaling up will bring additional challenges in real-time
decoding as the syndrome measurements per cycle in-
crease quadratically with the code distance. On the
classical side, we must ensure that software elements in-
cluding our calibration protocols, real-time decoders and
logical compilers can scale to the sizes and complexities
needed to run multiple surface code operations.
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